“扭角涡”使电子在三层石墨烯中流动
据美国哥伦比亚大学(Columbia University Quantum Initiative)2022年4月8日提供的消息,在魔角的海洋中,“扭角涡”使电子在三层石墨烯中流动(In a sea of magic angles, 'twistons' keep electrons flowing through three layers of graphene)。
几年前,在两个极其轻微扭曲的石墨烯(graphene)层中发现了超导性,这在量子材料界引起了轰动。研究人员发现了一种简单的装置,利用只有两个原子厚度的碳薄片来研究无电阻电流,以及其他与电子通过材料运动有关的现象。
但是,两层之间的扭曲角度必须刚好达到所谓的“魔”角("magic" angle)即1.1度,才能观察到这种现象。哥伦比亚大学迪安实验室(Dean Lab at Columbia)的博士生约书亚·斯旺(Joshua Swann)解释说,这是因为层中的原子想要抵抗扭曲,并“放松”回到零角度。当魔角消失时,超导性也消失了。
加入第三层石墨烯可以提高发现超导性的几率,但原因尚不清楚。哥伦比亚大学等机构的研究人员2022年4月7日在《科学》(Science)杂志网站上发表论文——Simon Turkel, Joshua Swann, Ziyan Zhu, Maine Christos, K. Watanabe, T. Taniguchi, Subir Sachdev, Mathias S. Scheurer, Efthimios Kaxiras, Cory R. Dean, Abhay N. Pasupathy. Orderly disorder in magic-angle twisted trilayer graphene. Science, 2022, 376(6589): 193-199. DOI: 10.1126/science.abk1895. Published: 7 Apr 2022. https://www.science.org/doi/10.1126/science.abk1895,揭示了三层石墨烯物理结构的新细节,这有助于解释为什么三层比两层更适合研究超导性。
参与此项研究的除了来自美国哥伦比亚大学的研究人员之外,还有来自美国哈佛大学(Harvard University)、美国普林斯顿高等研究院(Institute for Advanced Study, Princeton, USA)、美国布鲁克海文国家实验室(Brookhaven National Laboratory, Upton, NY 11973, USA.);日本国立材料科学研究所(National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan)以及奥地利因斯布鲁克大学(University of Innsbruck, Austria)的研究人员。
利用能够成像到单个原子水平的显微镜,研究小组发现,在某些区域的一组原子正在蜷缩成一种被阿布依·帕苏帕蒂实验室(Abhay N. Pasupathy Lab)的博士生西蒙·吐克尔(Simon Turkel)称为“扭角涡(twistons)”的东西。这些扭角涡以一种有序的方式出现,使得整个装置能够更好地保持超导发生所必需的神奇角度。
约书亚·斯旺为这项研究制造了该设备,他说,这是一个令人鼓舞的结果。“我已经制造了20或30个双层石墨烯设备,并看到可能有2或3个是超导的。有了三层,你可以探索在双层系统中难以研究的特性。”
这些特性与一类称为铜酸盐(cuprates)的复杂材料重叠,铜酸盐在相对较高的-220 °F下具有超导性。更好地理解超导的起源可以帮助研究人员开发出导电时不会损失能量的电线,或者不需要在昂贵的低温条件下维持的设备。
在未来,研究人员希望将他们在扫描中看到的与三层设备中量子现象的测量联系起来。西蒙·吐克尔说:“如果我们能控制这些扭角涡,它们都取决于设备顶部和底部层之间的角度失配(angle mismatch),我们就可以对它们对超导性(superconductivity)的影响进行系统研究,这是一个令人兴奋的开放性问题。”
上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。
Study improves the understanding of superconductivity in magic-angle twisted trilayer graphene
Zooming into trilayer graphene
Stacking and twisting graphene layers with respect to each other can lead to exotic transport effects. Recently, superconductivity was observed in graphene trilayers in which the top and bottom layers are twisted with respect to the middle layer by the same, “magic” angle. Turkel et al. used scanning tunneling microscopy to take a closer look into the stacking structure. They found that a small misalignment between the top and bottom layers caused the lattice to rearrange itself into a pattern of triangular domains. The domains had a magic-angle twisted trilayer structure and were separated by a network of line and point defects. —JS
Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near–magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.